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Introduction QP

Acknowledgments:
» Dr. Kai Goebel and the PHM Society
» Previous tutorial presenters
» SGT Inc., Diagnostics & Prognostics Group, NASA Ames
» Prof. Yongming Liu and his team for the crack growth dataset
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Topics of the tutorial g phm

What is prognostics?
Why prognostics?
Prognostic process

Examples (with codes)



What is prognostics?

Why prognostics?

Prognostic process

Examples (with codes)

Your feelings during this tutorial if:

Uh? PHM?
prediction?

you know (some)
PHM
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Today’s material @

Download this presentation and tutorial code at:
phmsociety.org/events/conference/phm /19 /tutorials

Scripts and dataset:
particleFilterPrediction. py gpRegression.py CO2data.txt

Libraries we'll use:

Instructions to install Python and libraries:
README .txt


https://www.phmsociety.org/events/conference/phm/19/tutorials
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What is prognostics?

What is prognostics?



Definition

Origin

QS phmsociety
GREEK
pro-
before GREEK LATE LATIN
prognasis
GREEK
gigndskein

prognosis
mid 17th centt
know

mid 17th century: via late Latin from Greek prognésis, from pro- ‘before’ + gigndskein *know’.
Prognostics is an engineering discipline focused on predicting the
intended function*

time at which a system or a component will no longer perform its

Hoboken: Wiley; 2006 Sep.

*Vachtsevanos GJ, Lewis F, Hess A, Wu B. Intelligent fault diagnosis and prognosis for engineering systems.

DA



Approaches to prognostics

Thanks to Prof. J. W. Hines, PHM Tutorial 2009

96 phmsociety
A = A(t), MTTF, MTBF, ...

DA


http://www.phmsociety.org/sites/phmsociety.org/files/Hines_Prognostics_TutorialPHM09.pdf

Approaches to prognostics

Thanks to Prof. J. W. Hines, PHM Tutorial 2009

Qa phmsociety
A= X(t), MTTF, MTBF, ...

E.g., proportional hazard models

A = A(t, z), where z are "stressors”

DA


http://www.phmsociety.org/sites/phmsociety.org/files/Hines_Prognostics_TutorialPHM09.pdf

Approaches to prognostics

Thanks to Prof. J. W. Hines, PHM Tutorial 2009

96 phmsociety

A = A(t), MTTF, MTBF, ...

E.g., proportional hazard models
A = A(t, z), where z are "stressors”

Modeling individual failure mechanisms, cumulative damage
models, state extrapolation,

DA


http://www.phmsociety.org/sites/phmsociety.org/files/Hines_Prognostics_TutorialPHM09.pdf
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Why prognostics?

Why prognostics?



Why prognostics?

Contingency
Management View

Diagnostics & Prognostics

¥ Embedded

Integrated o

DataBus,

A
Condition Based
Mission Planning

System
Reconfiguration
Data Comm

Control
Reconfiguration Inspections
Prognostic

] Command &

Contingency Control

Data Analysis &

Decision Making

Condition Monitoring|
Safetyand Risk

Analyses Maintenance and

Troubleshooting
and Repair P — \

— |

QQ phm

Maintenance
Management View

Planning + Scheduling

holesale Logistics

Tech
Support

“aticipatory
Material

Uonewwiou sonsiboT pejeBayu]

\ Condition Based

\
Knowledgdvase \,  Maintenance
eg TW N\

Maintenance

Predictive Data Analysis &
Portable LELIEIENEN  pecision Making
Maintenance Preventive
Aids Feedback to Maintenance  Condition Monitoring
reduction Reliability Analysis
Control

Information systems

Thanks to: Dr. Abhinav Saxena

Schematic adapted from: A. Saxena, Knowledge-Based Architecture for Integrated Condition Based Maintenance

of Engineering Systems, PhD Thesis, 2007.
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Why prognostics? Tpm

Safety

prevent unexpected failures
minimize impact on other systems

be prepared to initiate contingency
plans
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Why prognostics?

98 phmsociety

reduce spare parts stock
logistics footprint



90 phm

Why prognostics?

Maintenance

reduce unnecessary interventions
" Just-in-time” approach
optimize fleet maintenance

[
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Why prognostics?

Reliability & Performance

product reputation
reduced safety factors




Why prognostics?

QS phmsociety

prevent unexpected failures

minimize impact onto other
systems

reduce unnecessary interventions
" Just-in-time" approach

optimize fleet maintenance
implement contingency plans

product reputation
reduced safety factors

reduce spare parts stock
logistics footprint

Thanks to: Dr. N. Scott Clements. Please refer to his tutorial
PHM Tutorial 2011 for more information on industrial applications

DA


https://www.phmsociety.org/events/conference/phm/11/tutorials

. X2 ph
Prognostic process QP

Prognostic process



What we are trying to predict

98 phmsociety

Calculate the future values of the quantities of interest to infer
future behavior of the system
Calculate the time-to-failure or the remaining useful life (RUL) of a
confidence.

component/system, which current condition is known with certain

DA
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Steps of the prognostic process

f(features) -> 222

Damage sensitive feature

Damage size or severity

anodot.com - —
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Source of information (and uncertainty)

Abstraction

[ Algorithms ]

—»[ incompleteness J

[Numerical errors]

—»[ equipment J

systematic error

>l

"Q phm

Initial &

boundary
conditions
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Measures QP

» Ground truth measures are hard to come by, and sometimes
there's no term for comparison (e.g., Golden Gate bridge)

» Many times measures are noisy, corrupted by systematic errors
or faulty measurement systems

» Health-related quantities are typically hard to measure (i.e.,
measures are intrusive or destructive)

» Some times it's simply not possible (physically or
economically) to measure some variables
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Models QP

» Models are mere representations of reality

» Models do not (typically) accommodate all physical
phenomena affecting the system. If they do, they may not be
suitable for real-time applications

» They always require calibration and validation.

» They may require correction terms to be updated in real-time
(every time) or to be tuned on a case-basis



Environmental & operational conditions (input) "

» Varying environmental conditions can drastically change
algorithm performance (or even make algorithms useless)

» Many damage-sensitive features are also affected by
operational profiles (e.g., vibrations in a wind turbine
generator change with produced power)

» Environmental variables May be unknown, hard to measure or
their future values hard to predict (i.e., wind speed and
direction in urban environments)

» Finding causal relationships: dependencies from external
factors are hard to quantify



"0 phm

Computing methods

» Rounding errors or machine precision may not be negligible for
the problem we're looking at

» If the algorithm goal is minimization or filtering, they may get
stuck into a local minima (e.g., the results change at different
runs)

» They often need tuning of parameters, or in case of
data-driven methods, their performance depends on the
amount of training data

» Convergence not always guaranteed
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Prognosis in a cartoon QP

Tracking health vs. tracking degradation
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Prognosis in a cartoon

Probability distribution T =Pula=app): Iﬂra'ol.(f|a =apy)dt
0

for EoL given a failure

threshold (pgor ) nis adjusted with
\ probability of failure at
the given damage size

Fault Dimension (a)

Decision Point

Time (t)

Thanks to: Dr. Abhinav Saxena, GE
See his prognostics tutorial from Annual PHM Conference 2010 here.
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http://www.phmsociety.org/sites/phmsociety.org/files/Saxena_Prognostics_TutorialPHM10.pdf

Examples (with codes) <G phm

Examples (with codes)



Example 1
Data-driven CO, concentration prediction
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CO, concentration prediction @
Monthly average atmospheric CO, concentrations (in parts per million by

volume, ppmv) collected at the Mauna Loa Observatory in Hawaii between
1958-2001".

P

concentration, ppm
w w w w
w B w o
o o o o

w
N
1S}

310

1960 1970 1980 1990 2000
year, -

What will the CO; concentration be after 20017

credits for the idea to Rasmussen and Williams, Gaussian Processes for Machine Learning, and Sci-kit learn,
and NOAA for the dataset.


https://scikit-learn.org/stable/modules/gaussian_process.html
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Gaussian Process Regression QP

We use Gaussian Processes (GP) to predict the concentration over
the years after 2001.

The process f(x) is a GP if can be specified by a mean and
covariance function:

f(x) ~ GP (m(x), k(x,x))
The covariance function k(x, x’) is the key containing info

about time-correlations and dispersion.

Once we learn the covariance function, we can perform predictions
far from training points.
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GP - prior vs posterior @

output, f(x)
OS
output, f(x)
=) -
+

1A P &

2 -2
-5 0 5 -5 0 5
input, x input, x
(a), prior (b), posterior

Example from Rasmussen and Williams, Gaussian Processes for Machine

Learning, 2006.
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Building the covariance function QP

The covariance function k is the key: To fit the CO, time
series, we build k as a sum of elementary covariance functions:

2
/(1(X7 X/) = 0% exp (7% x 92 ) ) long-term rising trend

2 s 2 ’

— 2 —
k2(X, X/) = 032, exp (7 (X29X‘%) — = (‘ggx X ))) periodicity
2\ —fs
k3(X, X/) = 0% (1 + ();98)‘(95) ) medium term irregularities
k AN 02 (Xp_xq)2 02 Ky .
a(x, x") = by exp ( — 202, + 0110p,q noise

k(X¢X/) = kl(X¢X/) + k2(X>X,) + k3(X’X,) + k4(X’X,)

0 =[01,0,...,011]



Find hyper-parameter vector 6 “apnm

Find the hyper parameters @ that best fit the training data. We do
so by maximizing the marginal likelihood p (y|X) in log-form:

1 -1 1 n
log p(y|X) = —EyT (k+oal) "y — 5 log |k + 21| — 5Iog27r

covariance function
model error (noise)

See Rasmussen & Williams, GP for ML, 2006.
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Code QPhm

open gpRegression.py. make sure CO2data.txt is in the same
folder.



Prediction

90 phm

Using (sub-)optimal parameters found via differential evolution

algorithm?.
—— observations
—-- prediction i
420 o i
A
b
400 A i
.’,' v
£ ..IN?
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o .;M?"
8 !
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3 360
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o
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340
320
1960 1970 1980 1990 2000 2010 2020 2030
time, years
2

results, suggesting either that the population size or number of iterations was too small:

DE should converge towards the optimal parameters. For this problem, different runs produced different



Prediction

concentration, ppm

4201

400

w

®

o
L

360 q

340 4
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—— observations

---- prediction

---- prediction from Scikit-learn
+0
+0 from Scikit-learn
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90 phm



Prediction
What's the concentration today?

QQ phm

420
400
1S
[oR
o
< 3801
S 380
2
@©
C
=]
C
3 360
C
o
o
3404 CO, at Mauna Loa, Hawaii
---- prediction
---- Scikit-learn prediction
320 *0
+0 Scikit-learn

1960 1970 1980 1990 2000 2010 2020 2030
time, years



A few things to remember G phm

What about model validation???

Here's some options you should try:

» Split dataset into training and validation
» Cross-validation with batches, leave-one-out, etc.
» Gather more data

» Try adding/removing different covariance functions



Example 2
Fatigue crack growth prognosis using particle filter



Fatigue crack growth prognosis

QQ phm

Data from 2019 PHM data challenge:

533.4mm

L 1.6mm

203.2mm

|42.2mp]

139.7mm

304.8mm

e Actuator @ Countersunk hole —-—Lamb wave path

© Sensor

» fatigue crack growth at rivet holes

» tensile, constant amplitude fatigue
loading

Thanks to: Prof. Yongming Liu and

his team, ASU

Visit the 2019 PHM Data challenge website
for more information.




Fatigue crack growth prognosis enm

74 threshold a = 7.22| —,
at 55000

EN v o
L L L

crack length, mm

w
L

5
44000 46000 48000 50000 52000 54000
load cycle, -

Given the set of sequential measures of crack length, can we
predict the number of cycles to reach final length a = 7.22
mm (i.e., 55,000 load cycle)?



Bayesian filtering equations “apnm

Chapman-Kolmogorov and Bayesian updating

p(kal):/ (XK Xio1) p (i1 Y1) dXx 1
P ( Xkl Y1) p(Y«lXk)
X lY.) =
p(X«lY«) o (Y2 Yr1)

Far-ahead prediction stage:

k+1

P(Xk+/\Yk)—/P(Xk\Yk) IT P (XiIXj-1) | dXcseqi—
x j=k+1



Particle filtering pseudo-code “apnm

Input: xi’ll,v i=1,---,Ns, and yy

Output: p (X, |Yy), p(RULg|Yy)

1. Approximate posterior pdf

()
k

4 (yk|x ) <— compute likelihood for all samples

L WIE 1 (zk\x(i)) <— assign weights

x, ) ~ p(Xklx() ) < propagate samples with model function

(
Wik

p(Xk|Yk) = Z, f W,E)5 (i) + approx. posterior pdf
koXj

2. Systematic re-sampling
v o Pl = <0y = w?
wld =1/Ng ¥ =1, N
3. Prognosis
fori=1,2,---,Ns do
(0 € safe domain do
X XX, )
l4=1

while x

end
tf = ty4 ) < extract time at which sample i reached threshold x;,

RULE(') = tf — t < extract remaining useful life for sample i
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Assign variables @

x = [a,log C,m]"T augmented state vector
z—z=ateg unbiased, noisy measures
u— u=AS=95MPa applied stress range (R ~ 0.05)
0 =[logC,m]" state model parameter vector
€r = [€¥, €10g C, em] T state model error

where:

W~ N(_%a O‘i), [€|og Cs Em] ~ MVN(07 zB)a €g ™~ N(Oa 02)



Code “apm

open particleFilterPrediction.py
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Prediction QP
;1 O observed (true) O
[] measured (synthetic)
£ .. -/ estimated
£ 95% o-band
e
-+
()]
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o
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Q
v 34
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Prediction QP

true RUL

_|_ —
X 1201 | —— 95% o-band
Q ' [0 predicted RUL
S 1004 RUL +10%EOL band
“g RUL +10%RUL cone
=)
O 80 A
C
'S
'S
£ 60
p
©
©
£
O 201
C

0 - T T T T u
0 20 40 60 80 100
specimen life from first detection, %




A few things to remember “a phm

» The model error (or process noise) € has that form for a
reason. Please see Corbetta et al. MSSP 2018, 104; 305:322

» Try to implement Kernel smoothing instead of artificial
dynamics for better performance (see Liu J, West M. In
Sequential Monte Carlo methods in practice 2001; 197:223
Springer, NY.)

» Using unbounded processes to estimate bounded parameters
usually results in poor performance
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Useful links QP

Prognostics Center of Excellence (PCoE)

Web page:
http://prognostics.nasa.gov

Data repository:
https://ti.arc.nasa.gov/tech /dash/pcoe/prognostic-data-
repository/


http://prognostics.nasa.gov
https://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/
https://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/
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